High-energy observations of PSR B1259-63 during the 2014 periastron passage P.H. Thomas Tam, K. L. Li, Albert Kong (NTHU, Taiwan) Jumpei Takata (Univ. Hong Kong) A. T. Okazaki (Hokkai-Gakuen Univ., Japan) David Hui (Chungnam Univ., Korea) #### Contents - PSR B1259-63/LS 2883 as a gamma-ray binary - Multiwavelength observations over previous periastron passages - 2014 periastron passage - Future prospects #### γ-ray binaries • non-thermal radiations e.g., binary pulsars, micro-quasar jets #### γ-ray binaries - composed of a compact object and a massive star, distinguished by their radiative output with a peak in vFv beyond 1 MeV (Dubus 2013). - PSR B1259-63, LS 5039, LS I +61 303, HESS J063 2+057, 1FGL J1018.6-5856 | | PSR B1259-63* | LS 5039^{\dagger} | LS I +61°303° | HESS J0632+057 $^{\circ}$ | 1FGL J1018.6-5856 [‡] | |--|--------------------------|---------------------|---------------|---------------------------|--------------------------------| | P _{orb} (days) | 1236.72432(2) | 3.90603(8) | 26.496(3) | 315(5) | 16.58(2) | | e | 0.8698872(9) | 0.35(3) | 0.54(3) | 0.83(8) | - | | ω (°) | 138.6659(1) [#] | 212(5) | 41(6) | 129(17) | - | | i (°) | 19-31 | 13-64 | 10-60 | 47-80 | - | | d (kpc) | 2.3(4) | 2.9(8) | 2.0(2) | 1.6(2) | 5.4 | | spectral type | O9.5Ve | O6.5V((f)) | B0Ve | B0Vpe | O6V((f)) | | M_{\star} (M _{\odot}) | 31 | 23 | 12 | 16 | 31 | | R_{\star} (R _{\odot}) | 9.2 | 9.3 | 10 | 8 | 10.1 | | T_{\star} (K) | 33500 | 39000 | 22500 | 30000 | 38900 | | d _{periastron} (AU) | 0.94 | 0.09 | 0.19 | 0.40 | (0.41) | | dapastron (AU) | 13.4 | 0.19 | 0.64 | 4.35 | (0.41) | | $\phi_{ m periastron}$ | 0 | 0 | 0.23 | 0.967 | - | | φ _{sup. conj.} | 0.995 | 0.080 | 0.036 | 0.063 | | | $\phi_{\text{inf. conj.}}$ | 0.048 | 0.769 | 0.267 | 0.961 | - | ### γ -ray binaries Dubus (2013) ### PSR B1259-63 and its companion • PSR B1259-63/LS 2883 comprises of a pulsar and an Oe star, at d~2.3 kpc (Negueruela et al. 2011) - Eccentricity ~ 0.87; orbital period ~3.4 years - the pulsar has a spin period 47.8 ms and spin-down power \sim 8 x 10³⁵ erg s⁻¹ #### A unique system - The long orbital period means that we have to wait for years to collect data in a single orbit - The only gamma-ray binary in which the nature of the compact object is unambiguously known (as a pulsar) #### Near the periastron Credit: NASA #### A unique system - Non-thermal emission, radio, through X-rays, to TeV gamma-rays, is generated during the interaction between the stelllar wind/disk and the pulsar wind - An astrophysical laboratory to study the pulsar wind since it terminates close to the pulsar #### Radio observations From top to bottom flux densities are at 0.84, 1.4, 2.4, 4.8, 8.4 GHz Johnston et al. (1999) #### X-ray emission Chernyakova et al. (2009) #### Extended radio/X-ray emission FIG. 1.— LBA images of PSR B1259–63 at 2.3 GHz. North is up and east is to the left. The dates and the days after the periastron passage (τ) are quoted at the top of each panel. The synthesized beam is displayed in the rectangle on the bottom-right corner of each image. The red crosses mark the region where the pulsar should be contained in each run (see the text). As a reference, the size of the major axis of the orbit of PSR B1259–63/LS 2883 is shown in the first panel. For each image, the displayed contours start at 3σ and increase by factors of $2^{1/2}$; the 1σ rms close to the source in each image from left to right is 0.30, 0.66, and 0.15 mJy beam⁻¹. Moldon et al. (2012) Chandra observations taken in 2009, near apastron (Pavlov et al. 2011) #### Gamma-ray emission - Not detected by COMPTEL & EGRET over 1994 periastron passage - Predicted to be γ-ray source by Tavani & Arons (1997), Kirk et al. (1999) #### Gamma-ray emission - Not detected by COMPTEL & EGRET over 1994 periastron passage - Predicted to be γ-ray source by Tavani & Arons (1997), Kirk et al. (1999) H.E.S.S. Collaboration (2005) H.E.S.S. Collaboration (2013) #### The 2010 periastron passage - No detection before end of 2010 - First periastron passage since Fermi launch @ December 14, 2010 - Will any GeV light curve be similar to X-ray/TeV light curve? #### GeV emission was first seen Tam et al. (2011) #### The GeV surpise! Post-periastron flares Tam et al. (2011) #### The GeV surpise! Post-periastron flares Dubus & Cerutti (2013) #### No contemporaneous TeV flare H.E.S.S. Collaboration (2013) #### Multi-wavelength lightcurves Chernyakova et al. (2014) #### Press conference in Taiwan #### 發現「γ射線瞬變」清大領先全球 【記者蔡永彬/台北報導】去年 11月20日,清華大學天文研究所一個6人小團隊在位於南十字座旁的 雙星系統發現「γ(讀作gamma 、伽瑪)射線瞬變現象」,這項 發現領先全球。研究成果登在昨天 的《The Astrophysical Journal Letters》(天文物理期刊通訊)上。 清大校長陳力俊指出,他們發現 了一個人類並不十分理解的「奇異 現象」,未來人類對「中子星」的 了解可能要修正了。 清大天文所博士後研究員譚相 軒是第1位發現此現象的天文學家 。從去年10月起,他觀察位於南 十字座附近的一顆中子星「PSR B1259-63」和一顆質量是太陽24倍 的大質量恆星「LS 2883」組成的 雙星系統,中子星以傾斜橢圓軌道 繞大恆星運行,周期3.4 年。 譚栢軒表示,一般的雙星系統大 多放出X光,放出了射線的系統非 常罕見:有天文學家預期,這兩星 距離很近時,就可能會放出 r 射線。去年11月20日前,譚栢軒沒任何收穫,當天卻突然探測到微弱 r 射線,「很高興!」今年1月中旬,研究團隊又觀測到 r 射線,而且強度增加好幾倍。 團隊的博士後高田順平推測,7 射線可能起因於這兩顆星的粒子互動,目前無法完全解釋成因。清大 天文所副教授江國興說,雖然有理 論解釋中子星經過大恆星會是什麼 狀況,不過以前也沒人真的看過。 清大團隊在位於南十字座的 雙星系統發現「γ射線瞬變現 象」。圖中人物爲清大天文研 究所副教授江國興。 記者蔡永彬/攝影 #### Questions before 2014 May - Will the gamma-ray flare repeat? - If so, will it happen at a similar orbital phase? - How many flares are there? - Is there pre-periastron emission? How we characterize it? - Is there contemperanous X-ray flare? ### Fermi, Swift & NuSTAR campaign - Periastron occurred on May 4, 2014 - Pointed-mode observations (with increased exposure towards PSR B1259-63) were taken during May 31 to June 26, 2014 (c.f. Julie) - Swift/XRT observed PSR B1259-63 more intensively over the pasage, even on daily basis during June 10 to 18 - NuSTAR observed PSR B1259-63 five times over the passage, good converage for different phases #### The light curves 5-day bins X-ray spectrum becomes harder over time ### Atels: when did the GeV emission start? - Atel 6198 (Tam & Kong): no GeV emission before periastron; highest-ever X-ray flux at $t_{\rm p}$ +18 days - Atel 6204 (Malyshev+): GeV flare@June 3-5 - Atel 6216 (Tam, Kong & Leung): did not confirm Atel 6204, instead the flare started@June 6-8 - Atel 6225 (Wood & LAT team): confirm Atel 6216 - Atel 6231 (AGILE team): GeV detection@June 11-13 - Also Atel 6248 (Bordas+): Short-term X-ray/gamma-ray variability from PSR B1259-63 #### The light curves (flare) Daily bins ½-day bins Swift/XRT #### The light curves #### The spectra ΙI III April 20 - May 14 (periastron passage) May 15 - June 1 (X-ray peak) June 2 - July 2 (flaring state) #### The spectra II III April 20 - May 14 (periastron passage) p=2.7, p(electron index) synchrotron emission May 15 - June 1 (X-ray peak) p=2.4 June 2 - July 2 (flaring state) p=2.0 #### The spectra April 20 - May 14 (periastron passage) p=2.7, p(electron index) synchrotron emission May 15 - June 1 (X-ray peak) p=2.4 June 2 - July 2 (flaring state) p=2.0 ## Does dedicated pointing really help? With rocking angle $< 52^{\circ}$ constraint No cut on rocking angle #### Questions before 2014 May - Will the gamma-ray flare repeat? Yes. - If so, will it happen at a similar orbital phase? Yes. - How many flares are there? More than One. - Is there pre-periastron emission? Probably. How we characterize it? ... - Is there contemperanous X-ray flare? Yes. ### Synergy with other instruments #### Current X-rays (Swift, Chandra, XMM, Suzaku) hard X-rays (NuSTAR) Ha emission (probe disk size, c.f. Chernyakova+ 2014) Future CTA @ 50 GeV Soft gamma-rays 0.1-10 MeV #### Questions - What caused the GeV flares? - Why it happen at orbital phase when there seems to be nothing happening? Dubus & Cerutti (2013) #### 20 years on Tavani+ (1994) #### Summary - PSR B1259-63 has brought surprises over every periastron passage - The GeV flare did repeat, at a similar orbital phase as 3.4 years ago - X-ray flux varies simiar to gamma-ray flux (durin g the 'flare epoch'), with a lesser extent - Pre-periastron GeV emission situation unclear (increased LAT exposure certainly needed 2017) - Establishing keV GeV spectral connection